Movie Recommendation System Using User-Based Collaborative Filtering (ubcf)
Student: Abdulmalik Kaka Musa (Project, 2025)
Department of Computer Information and Communication Science
Federal University, Dutsin-Ma, Katsina State
Abstract
This project presents the development of a movie recommendation system using User-Based Collaborative Filtering (UBCF). The system is designed to alleviate the problem of information overload and enhance user satisfaction on movie streaming platforms. Using the MovieLens 100K dataset, the system identifies user preferences through rating patterns and recommends movies based on similarities computed with Pearson Correlation. The project was implemented in Python using libraries such as Pandas and Scikit-learn. Evaluation metrics such as Precision (0.82), Recall (0.75), and F1-Score (0.78) demonstrate the effectiveness of the system. Though limited by cold-start and sparsity issues, the results show promising potential for lightweight recommendation systems in real-world applications.
Keywords
For the full publication, please contact the author directly at: abdulmalikmusakaka@gmail.com
Filters
Institutions
- Adeseun Ogundoyin Polytechnic, Eruwa, Oyo State 1
- Adeyemi College of Education, Ondo State. (affl To Oau, Ile-Ife) 68
- Ahmadu Bello University, Zaria, Kaduna State 101
- Air Force Institute of Technology (Degree), Kaduna, Kaduna State 11
- Air Force Institute of Technology, Kaduna, Kaduna State 2
- Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Ebonyi State 6
- Akwa Ibom State University, Ikot-Akpaden, Akwa Ibom State 53
- Akwa Ibom State College of Edu, Afaha-Nsit (Affl To Uni Uyo), Akwa Ibom State 2
- AKWA-IBOM STATE POLYTECHNIC (IEI), IKOT-OSURUA, AKWA IBOM STATE 41
- Akwa-Ibom State Polytechnic, Ikot-Osurua, Akwa Ibom State 32