Mathematical Modeling of Bernoulli-Euler Beam on Elastic Foundation With Viscous Damping, Forcing Term and Thermal Effects
Student: CLEMENT OJO FALADE (Project, 2025)
Department of Applied Mathematics With Statistics
Ekiti State University, Ado-Ekiti, Ekiti State
Abstract
This project studied the dynamic response of a Bernoulli-Euler beam resting onan elastic foundation and subjected to spatially distributed forcing, viscous damping, and thermal effects. A governing equation incorporating axial tension andtemperature variations is derived, allowing simulation of beam deflection undervarying conditions. Non-dimensionalization and numerical simulations reveal howcombined thermal expansion and damping influence deflection. This model provides more understanding for structural designs in environments exposed to bothmechanical loads and thermal variations, which enhances resilience and stabilityunder dynamic forces.
Keywords
For the full publication, please contact the author directly at: dcmnysc@gmail.com
Filters
Institutions
- HASSAN USMAN KATSINA POLYTECHNIC (NCE), KATSINA, KATSINA STATE 4
- Hassan Usman Katsina Polytechnic, Katsina, Katsina State 5
- Heritage Polytechnic, Ikot Udota, Akwa Ibom State 46
- Hussaini Adamu Federal Polytechnic, Kazaure, Jigawa State 8
- Ibrahim Badamasi Babangida University, Lapai, Niger State 24
- Igbinedion University, Okada, Benin City, Edo State 2
- Ignatius Ajuru University of Education, Port Harcourt, Rivers State 8
- Imo State Polytechnic, Umuagwo, Owerri, Imo State 3
- Imo State University, Owerri, Imo State 45
- Institute of Management and Technology, Enugu, Enugu State 11