Predicting University Student Performance Using Machine Learning Techniques
Student: Ayodeji Anthony Alese (Project, 2025)
Department of Computer and Information Science
Bamidele Olumilua University of Edu. Science and Tech. Ikere Ekiti, Ekiti State
Abstract
This research looks forward to developing a model with the ability to make effective analysis and prediction on the performance of students in regard to their advanced knowledge, using modern machine learning techniques. Through modern machine learning algorithms-supervised and unsupervised-finding insight into students' academic and behavioral data, the paper tends to be helpful for educational institutions as regards early intervention with better time-saving support for at-risk students by optimizing learning outcomes.
Keywords
For the full publication, please contact the author directly at: sanchezalese@gmail.com
Filters
Institutions
- Federal College of Education (Tech), Gusau, (Affl To Abu Zaria), Zamfara State 1
- Federal College of Education, Abeokuta (Aff To University of Ibadan), Ogun State 2
- Federal College of Education, Eha-Amufu, Enugu State 1
- Federal College of Education, Kano (Affl To Ahmadu Bello University, Zaria) 1
- Federal College of Education, Kontagora, (Affl To Abu, Zaria), Niger State 2
- Federal College of Education, Okene, (Affl. To University of Ibadan), Kogi State 3
- Federal College of Education, Pankshin, (Affl To Uni of Jos), Plateau State 2
- Federal College of Education, Zaria, Kaduna State (affl To Abu, Zaria) 1
- Federal College of Wildlife Management, New Bussa, Niger State 1
- Federal Cooperative College, Ibadan P.m.b. 5033, Eleyele, Ibadan, Oyo State 3