Development of Visualization System Analysis and Network Traffic Pattern to Detect Anomalies and Potential Security Threats
Student: Abdulrahman Abdullahi Aliyu (Project, 2025)
Department of Computer Science and Information Technology
Federal University, Dutsin-Ma, Katsina State
Abstract
ABSTRACT
This project presents a machine learning-based system for detecting anomalies in network traffic. Using unsupervised learning techniques, particularly Isolation Forest, the system analyzes traffic patterns, identifies deviations from normal behavior, and visualizes the findings. The approach enhances early detection of potential threats and supports network security monitoring. traffic has become essential to ensuring the integrity, confidentiality, and availability of digital infrastructure. Traditional detection systems, which often rely on signature-based or supervised learning techniques, fall short in identifying zero-day attacks and previously unknown threats. This project proposes the development of a visualization-driven network anomaly detection system that utilizes unsupervised learning techniques to detect suspicious patterns and activities within network traffic.
Keywords
For the full publication, please contact the author directly at: abdulrahmanaleeyu91@gmail.com
Filters
Institutions
- Redeemers University, Ede, Osun State 4
- Rhema University, Aba, Abia State 11
- Rivers State University of Science and Technology, Port Harcourt, Rivers State 3
- RIVERS STATE UNIVERSITY, PORT HARCOURT, RIVERS STATE 13
- Rufus Giwa Polytechnic, Owo, Ondo State 2
- Saadatu Rimi College of Edu, Kumbotso, Kano State (affiliated To Abu, Zaria) 1
- Salem University, Lokoja, Kogi State 4
- School of Health Information Mgt (Uch, Ibadan), Oyo State 5
- School of Health Information Mgt, Oau Teaching Hospital, Ile-Ife, Osun State 30
- Skyline University Nigeria, Kano, Kano State 2