Diabetes Mellitus Prediction Using Artificial Neural Network
Student: Ayomide Michael Aladetuyi (Project, 2025)
Department of Computer and Information Science
Bamidele Olumilua University of Edu. Science and Tech. Ikere Ekiti, Ekiti State
Abstract
The project addresses the global health concern of diabetes mellitus by creating a predictive model using an Artificial Neural Network (ANN). The model was trained and tested on the "Early-Stage Diabetes Risk Prediction Dataset" from Mendeley, which includes demographic and clinical symptom data. After data preprocessing and an 80-20 train-test split, the developed ANN model achieved a high accuracy of 98%. The project successfully deployed this model into a functional web application using Google Colab and Gradio, showcasing a practical tool for early diabetes risk assessment.
Keywords
For the full publication, please contact the author directly at: aladetuyiayosire@gmail.com
Filters
Institutions
- Adeseun Ogundoyin Polytechnic, Eruwa, Oyo State 1
- Adeyemi College of Education, Ondo State. (affl To Oau, Ile-Ife) 68
- Ahmadu Bello University, Zaria, Kaduna State 101
- Air Force Institute of Technology (Degree), Kaduna, Kaduna State 11
- Air Force Institute of Technology, Kaduna, Kaduna State 2
- Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Ebonyi State 6
- Akwa Ibom State University, Ikot-Akpaden, Akwa Ibom State 53
- Akwa Ibom State College of Edu, Afaha-Nsit (Affl To Uni Uyo), Akwa Ibom State 2
- AKWA-IBOM STATE POLYTECHNIC (IEI), IKOT-OSURUA, AKWA IBOM STATE 41
- Akwa-Ibom State Polytechnic, Ikot-Osurua, Akwa Ibom State 32