Distributed Denial of Service (ddos) Attack Identification and Analysis Using Python for Tracefile Processing
Student: Ifeoluwapo Erioluwatosin Popoola (Project, 2025)
Department of Computer Engineering
Ekiti State University, Ado-Ekiti, Ekiti State
Abstract
Distributed Denial of Service (DDoS) attacks pose significant threats to network security by overwhelming a target system with malicious traffic, disrupting legitimate user access. This project focuses on the identification and analysis of DDoS attacks using Python-based tracefile processing techniques. A network simulation is conducted to generate normal and attack traffic, which is then logged into a tracefile. The collected data is analyze to identify traffic anomalies, packet loss, congestion patterns, and bandwidth utilization. Various performance metrics such as throughput, packet delivery ratio, and traffic distribution are examined to differentiate between legitimate and attack traffic. The findings from this study contribute to understanding DDoS attack characteristics and provide insights for enhancing network security through effective traffic analysis techniques.
Keywords
For the full publication, please contact the author directly at: popoolaifeoluwapo@gmail.com
Filters
Institutions
- Adeseun Ogundoyin Polytechnic, Eruwa, Oyo State 1
- Adeyemi College of Education, Ondo State. (affl To Oau, Ile-Ife) 68
- Ahmadu Bello University, Zaria, Kaduna State 101
- Air Force Institute of Technology (Degree), Kaduna, Kaduna State 11
- Air Force Institute of Technology, Kaduna, Kaduna State 2
- Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Ebonyi State 6
- Akwa Ibom State University, Ikot-Akpaden, Akwa Ibom State 53
- Akwa Ibom State College of Edu, Afaha-Nsit (Affl To Uni Uyo), Akwa Ibom State 2
- AKWA-IBOM STATE POLYTECHNIC (IEI), IKOT-OSURUA, AKWA IBOM STATE 41
- Akwa-Ibom State Polytechnic, Ikot-Osurua, Akwa Ibom State 32