Potato Plant Leaf Disease Diagnosis System
Student: Ezra Andrew (Project, 2025)
Department of Computer Science and Informatics
Kaduna State University, Kaduna, Kaduna State
Abstract
Potatoes are one of the world’s most important food crops, but they are vulnerable to various diseases that can reduce yield and quality. Many farmers in Nigeria still rely on manual inspection and random chemical application, which are often ineffective. This study introduces a Potato Plant Leaf Disease Diagnosis System that uses deep learning to improve disease detection. The system is powered by the EfficientNetB7 Convolutional Neural Network (CNN), a highly accurate model for image classification. The model was trained on a dataset of potato leaf images and achieved 98% accuracy on the test set and 97.5% validation accuracy, proving its reliability. The system is available as a web application, allowing farmers to upload or capture leaf images, get a diagnosis, and receive treatment advice. By providing a fast and accurate diagnosis, the system helps farmers make better decisions, improve crop health, and reduce losses.
Keywords
For the full publication, please contact the author directly at: ezraandrew@gmail.com
Filters
Institutions
- University of Ilorin, Kwara State 400
- University of Jos, Jos, Plateau State 19
- University of Lagos 18
- University of Maiduguri ( - Elearning), Maiduguri, Borno State 3
- University of Maiduguri, Borno State 109
- University of Nigeria, Nsukka, Enugu State 269
- University of Port Harcourt Teaching Hospital, Port Harcourt , River State 5
- University of Port-Harcourt, Rivers State 174
- University of Uyo, Akwa Ibom State 206
- Usmanu Danfodio University, Sokoto, Sokoto State 245