Evaluating the Effectiveness of Machine Learning Models in Detecting Network Attacks Using the Cicids 2017 Dataset
Student: Sekinat Oluwafunmilayo Aweda (Project, 2025)
Department of Computer Science
Kwara State University, Malete, Ilorin, Kwara State
Abstract
The increasing frequency and sophistication of cyberattacks have made network security a major concern. This study evaluates the effectiveness of various machine learning models in detecting network attacks using the CICIDS 2017 dataset. Algorithms such as Random Forest, SVM, CNN, RNN, and Gradient Boosting were compared using metrics like accuracy, precision, recall, and F1-score. Results show that Gradient Boosting achieved an impressive 99% accuracy, proving effective for intrusion detection. The findings highlight machine learning’s ability to enhance real-time network security and improve intrusion detection systems.
Keywords
For the full publication, please contact the author directly at: awedasekinat05@gmail.com
Filters
Institutions
- HASSAN USMAN KATSINA POLYTECHNIC (NCE), KATSINA, KATSINA STATE 4
- Hassan Usman Katsina Polytechnic, Katsina, Katsina State 5
- Heritage Polytechnic, Ikot Udota, Akwa Ibom State 46
- Hussaini Adamu Federal Polytechnic, Kazaure, Jigawa State 8
- Ibrahim Badamasi Babangida University, Lapai, Niger State 24
- Igbinedion University, Okada, Benin City, Edo State 2
- Ignatius Ajuru University of Education, Port Harcourt, Rivers State 8
- Imo State Polytechnic, Umuagwo, Owerri, Imo State 2
- Imo State University, Owerri, Imo State 45
- Institute of Management and Technology, Enugu, Enugu State 11