Evaluating the Effectiveness of Machine Learning Models in Detecting Network Attacks Using the Cicids 2017 Dataset
Student: Sekinat Oluwafunmilayo Aweda (Project, 2025)
Department of Computer Science
Kwara State University, Malete, Ilorin, Kwara State
Abstract
The increasing frequency and sophistication of cyberattacks have made network security a major concern. This study evaluates the effectiveness of various machine learning models in detecting network attacks using the CICIDS 2017 dataset. Algorithms such as Random Forest, SVM, CNN, RNN, and Gradient Boosting were compared using metrics like accuracy, precision, recall, and F1-score. Results show that Gradient Boosting achieved an impressive 99% accuracy, proving effective for intrusion detection. The findings highlight machine learning’s ability to enhance real-time network security and improve intrusion detection systems.
Keywords
For the full publication, please contact the author directly at: awedasekinat05@gmail.com
Filters
Institutions
- Novena University, Ogume, Delta State 1
- Nuhu Bamalli Polytechnic, Zaria, Kaduna State 7
- Nwafor Orizu College of Education, Nsugbe, Anambra State 1
- Obafemi Awolowo University, Ile-Ife, Osun State 15
- Oduduwa University, Ipetumodu, Osun State 9
- Ogun State College of Health Technology, Ilese-Ijebu, Ogun State 1
- Ogun State Institute of Tech(formerly Gateway Ict Poly), Igbesa, Ogun State 4
- Olabisi Onabanjo University, Ago-Iwoye, Ogun State 38
- Ondo State University of Medical Sciences, Laje Road, Ondo, Ondo State 1
- Osun State College of Education, Ila-Orangun 1