Comparative Analysis of Newton's Interpolation and Lagrange Interpolation for Financial Forecasting
Student: Eke Chidiebere David (Project, 2025)
Department of Industrial Mathematics
Federal University of Technology, Owerri, Imo State
Abstract
Financial forecasting is a critical tool in economic decision-making, helping businesses and investors predict market trends and allocate resources efficiently. Traditional forecasting models often require extensive dataset and struggle with short-term predictions in volatile market. This study explores the application of Newton's interpolation and LaGrange interpolation as alternative methods for financial forecasting. Using historical stock price data from Tesla Inc (TSLA), we implemented both interpolation techniques to predict future stock prices. The results indicate that Newton's interpolation provides a more accurate forecast compared to LaGrange interpolation, with a smaller error margin. The findings highlight the effectiveness of Newton's method in short-term financial forecasting, while also acknowledging the limitation of interpolation techniques in handling market volatility. The study leads in the recommendation of integrating interpolation with statistical and technical analysis methods to enhance predictive accuracy.
Keywords
For the full publication, please contact the author directly at: ekedavid16@gmail.com
Filters
Institutions
- Landmark University, Omu-Aran, Kwara State 1
- Lead City University, Ibadan, Oyo State 1
- Lens Polytechnic, offa, Kwara State. 215
- Madonna University, Elele, Rivers State 20
- Madonna University, Okija, Anambra State 2
- Mcpherson University, Seriki Sotayo, Ogun State 1
- Michael and Cecilia Ibru University, Owhrode, Delta State 1
- Michael Okpara University of Agriculture, Umudike 43
- Michael Otedola Col of Primary Educ. Epe, Lagos (affl To University of Ibadan) 8
- Modibbo Adama University, Yola, Adamawa State 15