Design and Implementation of Malaria Disease Detection System Using Convolutional Neural Network
Student: Mujitaba ADAM KABIR (Project, 2025)
Department of Computer Science
Northwest University, Kano, Kano State
Abstract
Malaria remains a significant global health challenge, particularly in resource-limited regions where traditional diagnostic methods like microscopy and Rapid Diagnostic Tests (RDTs) are time-consuming, labor-intensive, and prone to errors. This project aims to address these limitations by developing an AI-driven malaria detection system using Convolutional Neural Networks (CNNs). The system analyzes blood smear images to classify them as malaria-positive or negative. A dataset of 27,558 images from Kaggle was used to train and evaluate the model. The system achieved high accuracy, precision, recall, and F1-score, demonstrating its potential to improve malaria diagnosis. Usability testing revealed a 93% task completion rate and a 4.5/5 user satisfaction score, indicating the system's effectiveness and user-friendliness. The project highlights the potential of deep learning in healthcare and provides a foundation for future work, including clinical validation and real-time deployment.
Keywords
For the full publication, please contact the author directly at: mujitabakabir6@gmail.com
Filters
Institutions
- Federal Polytechnic, Mubi, Adamawa State 20
- Federal Polytechnic, Nasarawa, Nasarawa State 59
- Federal Polytechnic, Nekede, Imo State 53
- Federal Polytechnic, offa, Kwara State 18
- Federal Polytechnic, Oko, Anambra State 8
- Federal School of Biomedical Engineering, (LUTH), Idi-Araba, Lagos State 1
- Federal School of Surveying, Oyo, Oyo State 7
- Federal University of Agriculture, Abeokuta, Ogun State 19
- Federal University of Petroleum Resources, Effurun, Delta State 77
- Federal University of Technology Akure, Ondo State 23