Design and Implementation of Malaria Disease Detection System Using Convolutional Neural Network
Student: Mujitaba ADAM KABIR (Project, 2025)
Department of Computer Science
Northwest University, Kano, Kano State
Abstract
Malaria remains a significant global health challenge, particularly in resource-limited regions where traditional diagnostic methods like microscopy and Rapid Diagnostic Tests (RDTs) are time-consuming, labor-intensive, and prone to errors. This project aims to address these limitations by developing an AI-driven malaria detection system using Convolutional Neural Networks (CNNs). The system analyzes blood smear images to classify them as malaria-positive or negative. A dataset of 27,558 images from Kaggle was used to train and evaluate the model. The system achieved high accuracy, precision, recall, and F1-score, demonstrating its potential to improve malaria diagnosis. Usability testing revealed a 93% task completion rate and a 4.5/5 user satisfaction score, indicating the system's effectiveness and user-friendliness. The project highlights the potential of deep learning in healthcare and provides a foundation for future work, including clinical validation and real-time deployment.
Keywords
For the full publication, please contact the author directly at: mujitabakabir6@gmail.com
Filters
Institutions
- Adeseun Ogundoyin Polytechnic, Eruwa, Oyo State 1
- Adeyemi College of Education, Ondo State. (affl To Oau, Ile-Ife) 68
- Ahmadu Bello University, Zaria, Kaduna State 101
- Air Force Institute of Technology (Degree), Kaduna, Kaduna State 11
- Air Force Institute of Technology, Kaduna, Kaduna State 2
- Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Ebonyi State 6
- Akwa Ibom State University, Ikot-Akpaden, Akwa Ibom State 53
- Akwa Ibom State College of Edu, Afaha-Nsit (Affl To Uni Uyo), Akwa Ibom State 2
- AKWA-IBOM STATE POLYTECHNIC (IEI), IKOT-OSURUA, AKWA IBOM STATE 41
- Akwa-Ibom State Polytechnic, Ikot-Osurua, Akwa Ibom State 32