Design and Implementation of Malaria Disease Detection System Using Convolutional Neural Network
Student: Mujitaba ADAM KABIR (Project, 2025)
Department of Computer Science
Northwest University, Kano, Kano State
Abstract
Malaria remains a significant global health challenge, particularly in resource-limited regions where traditional diagnostic methods like microscopy and Rapid Diagnostic Tests (RDTs) are time-consuming, labor-intensive, and prone to errors. This project aims to address these limitations by developing an AI-driven malaria detection system using Convolutional Neural Networks (CNNs). The system analyzes blood smear images to classify them as malaria-positive or negative. A dataset of 27,558 images from Kaggle was used to train and evaluate the model. The system achieved high accuracy, precision, recall, and F1-score, demonstrating its potential to improve malaria diagnosis. Usability testing revealed a 93% task completion rate and a 4.5/5 user satisfaction score, indicating the system's effectiveness and user-friendliness. The project highlights the potential of deep learning in healthcare and provides a foundation for future work, including clinical validation and real-time deployment.
Keywords
For the full publication, please contact the author directly at: mujitabakabir6@gmail.com
Filters
Institutions
- Osun State College of Education, Ila-Orangun(Aff To Ekiti State Uni), Osun State 1
- Osun State College of Education, Ilesa, Osun State. (affl To Univ of Ibadan) 2
- Osun State Polytechnic, Iree, Osun State 467
- Osun State University, Osogbo, Osun State 11
- Our Saviour Institute of Science and Technology (polytechnic) Enugu, Enugu State 1
- PAN-ATLANTIC UNIVERSITY, KM 52 LEKKI-EPE EXPRESSWAY, IBEJU-LEKKI, LAGOS STATE. 14
- Paul University, Awka, Anambra State 2
- Petroleum Training Institute, Effurun, Delta State 1
- Precious Cornerstone University, Ibadan, Oyo State 1
- Prince Abubakar Audu University, Anyigba 30