Client Server Network Intrusion Detection System
Student: Aiyu Ahmad Musa (Project, 2025)
Department of Cyber Security
Nigerian Army University, Biu, Borno State
Abstract
The project focuses on building and evaluating a Network Intrusion Detection System (NIDS) using machine learning to detect malicious and normal network traffic. Using the NSL-KDD dataset, five models—Naïve Bayes, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Artificial Neural Network (ANN)—were tested. The Decision Tree performed best with 87.5% accuracy, while Logistic Regression followed with 85.5%. ANN achieved 83%, showing potential for improvement. The study highlights how data preprocessing and model optimization improve accuracy but notes limitations like dataset imbalance and lack of real-time testing. It recommends future research on ensemble learning, deep learning optimization, and real-time implementation to strengthen cybersecurity.
Keywords
For the full publication, please contact the author directly at: www.ahmadmusa333@gmail.com
Filters
Institutions
- Federal Polytechnic, Mubi, Adamawa State 20
- Federal Polytechnic, Nasarawa, Nasarawa State 59
- Federal Polytechnic, Nekede, Imo State 51
- Federal Polytechnic, offa, Kwara State 18
- Federal Polytechnic, Oko, Anambra State 8
- Federal School of Biomedical Engineering, (LUTH), Idi-Araba, Lagos State 1
- Federal School of Surveying, Oyo, Oyo State 7
- Federal University of Agriculture, Abeokuta, Ogun State 19
- Federal University of Petroleum Resources, Effurun, Delta State 77
- Federal University of Technology Akure, Ondo State 23