Client Server Network Intrusion Detection System
Student: Aiyu Ahmad Musa (Project, 2025)
Department of Cyber Security
Nigerian Army University, Biu, Borno State
Abstract
The project focuses on building and evaluating a Network Intrusion Detection System (NIDS) using machine learning to detect malicious and normal network traffic. Using the NSL-KDD dataset, five models—Naïve Bayes, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Artificial Neural Network (ANN)—were tested. The Decision Tree performed best with 87.5% accuracy, while Logistic Regression followed with 85.5%. ANN achieved 83%, showing potential for improvement. The study highlights how data preprocessing and model optimization improve accuracy but notes limitations like dataset imbalance and lack of real-time testing. It recommends future research on ensemble learning, deep learning optimization, and real-time implementation to strengthen cybersecurity.
Keywords
For the full publication, please contact the author directly at: www.ahmadmusa333@gmail.com
Filters
Institutions
- Redeemers University, Ede, Osun State 4
- Rhema University, Aba, Abia State 11
- Rivers State University of Science and Technology, Port Harcourt, Rivers State 3
- RIVERS STATE UNIVERSITY, PORT HARCOURT, RIVERS STATE 13
- Rufus Giwa Polytechnic, Owo, Ondo State 2
- Saadatu Rimi College of Edu, Kumbotso, Kano State (affiliated To Abu, Zaria) 1
- Salem University, Lokoja, Kogi State 4
- School of Health Information Mgt (Uch, Ibadan), Oyo State 5
- School of Health Information Mgt, Oau Teaching Hospital, Ile-Ife, Osun State 30
- Skyline University Nigeria, Kano, Kano State 2