Client Server Network Intrusion Detection System
Student: Aiyu Ahmad Musa (Project, 2025)
Department of Cyber Security
Nigerian Army University, Biu, Borno State
Abstract
The project focuses on building and evaluating a Network Intrusion Detection System (NIDS) using machine learning to detect malicious and normal network traffic. Using the NSL-KDD dataset, five models—Naïve Bayes, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Artificial Neural Network (ANN)—were tested. The Decision Tree performed best with 87.5% accuracy, while Logistic Regression followed with 85.5%. ANN achieved 83%, showing potential for improvement. The study highlights how data preprocessing and model optimization improve accuracy but notes limitations like dataset imbalance and lack of real-time testing. It recommends future research on ensemble learning, deep learning optimization, and real-time implementation to strengthen cybersecurity.
Keywords
For the full publication, please contact the author directly at: www.ahmadmusa333@gmail.com
Filters
Institutions
- Landmark University, Omu-Aran, Kwara State 1
- Lead City University, Ibadan, Oyo State 1
- Lens Polytechnic, offa, Kwara State. 215
- Madonna University, Elele, Rivers State 20
- Madonna University, Okija, Anambra State 2
- Mcpherson University, Seriki Sotayo, Ogun State 1
- Michael and Cecilia Ibru University, Owhrode, Delta State 1
- Michael Okpara University of Agriculture, Umudike 43
- Michael Otedola Col of Primary Educ. Epe, Lagos (affl To University of Ibadan) 8
- Modibbo Adama University, Yola, Adamawa State 15