Client Server Network Intrusion Detection System
Student: Aiyu Ahmad Musa (Project, 2025)
Department of Cyber Security
Nigerian Army University, Biu, Borno State
Abstract
The project focuses on building and evaluating a Network Intrusion Detection System (NIDS) using machine learning to detect malicious and normal network traffic. Using the NSL-KDD dataset, five models—Naïve Bayes, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Artificial Neural Network (ANN)—were tested. The Decision Tree performed best with 87.5% accuracy, while Logistic Regression followed with 85.5%. ANN achieved 83%, showing potential for improvement. The study highlights how data preprocessing and model optimization improve accuracy but notes limitations like dataset imbalance and lack of real-time testing. It recommends future research on ensemble learning, deep learning optimization, and real-time implementation to strengthen cybersecurity.
Keywords
For the full publication, please contact the author directly at: www.ahmadmusa333@gmail.com
Filters
Institutions
- Federal University of Technology, Minna, Niger State 47
- Federal University of Technology, Owerri, Imo State 95
- Federal University Oye-Ekiti, Ekiti State 41
- Federal University, Birnin-Kebbi, Kebbi State 37
- Federal University, Dutse, Jigawa State 6
- Federal University, Dutsin-Ma, Katsina State 63
- Federal University, Gashua, Yobe State 3
- Federal University, Gusau, Zamfara State 14
- Federal University, Kashere, Gombe State 1
- Federal University, Lafia, Nasarawa State 6